

15 March 2018

Pacifico Signs Option to Acquire Major New Gold-Copper Project In Guerrero Gold Belt of Mexico

Highlights

- Pacifico signs option to purchase 100% interest in the Violin Gold-Copper Project in the Guerrero Gold Belt of Mexico.
- Option agreement executed with highly attractive acquisition terms.
- Major intrusive-skarn related mineralisation indicated by extensive, strong gold and copper soil anomalies, and coincident magnetic highs.
- Several multi-million ounce gold mines and developing projects of this mineralisation style hosted within the Guerrero Gold Belt.
- Exploration work to commence immediately, drill targets to be confirmed, drilling to follow as soon as practical to advance towards establishing resources.

Pacifico Minerals Limited ("Pacifico" or "Company") is pleased to report it has entered into a Binding Option and Terms to Purchase agreement ("Agreement") to acquire all the issued capital in Minera GS S.A. de C.V. ("Minera GS"), a privately held gold mining and exploration company incorporated in Mexico that holds 100% of the mineral rights within the prospective tenement T.243345 (the "Violin Project").

The Violin Project, which has outstanding potential for a large and significant gold-copper deposit, lies in the Guerrero State of Mexico, about 250km south-west of Mexico City. The nearest major town of Chilpancingo is about 2 hours' drive. A network of tracks makes most of the area quite accessible. Pacifico's extensive experience operating in Latin America proved invaluable in securing the project.

Guerrero Gold Belt

The Violin Project lies within the Guerrero Gold Belt (Figure 1) which contains several major gold deposits and mines, see Table 1. Mineralization in the area is related to gold bearing iron skarn porphyries and occur within faults and as replacement deposits formed in and around the igneous intrusions. VMS-style massive sulphide deposits such as Campo Morado (Table 1) also occur in the region.

The Guerrero Gold Belt consists of Tertiary tonalite, granodiorite and monzodiorite porphyries intruded into Cretaceous limestones and sandstones. Skarn is developed as altered and replaced rock along the contact between the igneous intrusions and the carbonate-rich country rock. Within these skarn contact zones iron minerals dominate and include magnetite, hematite and pyrite as well as quartz, sericite, clays, gold and copper sulfide minerals.

CORPORATE DIRECTORY

Managing Director

Simon Noon

Directors

Richard Monti (Chairman)
Peter Harold (Non-exec.)
Andrew Parker (Non-exec.)

Company Secretary

Patrick Holywell

Registered office

Level 10, 553 Hay St Perth WA 6000

Telephone:

+61 8 6266 8642

Facsimile:

+61 8 9421 1008

Email:

info@pacificominerals.com.au

Table 1: Published Resources Significant deposits of the Guerrero Gold Belt

Deposit	Tonnes	Au grade	Au oz	Company	Status
Los Filos & El	639 Mt (mined	0.75g/t Au	15Moz Au	Leagold (sold by Goldcorp in 2016)	Mining
Bermajal ¹	+ reserves)				
El Limon-	46 Mt	2.7g/t Au	4Moz Au	Torex	Mining
Guajes ²					
Media Luna ²	51 Mt	4.5g/t Au	7.4Moz Au	Torex	Evaluation
Ana Paula ³	18 Mt	2.2g/t Au	1.3Moz Au	Alio Gold (formerly Timmins Gold)	Feasibility
Esperanza⁴	34Mt	0.98g/t Au	1.0Moz Au	Alamos Gold	Evaluation
Campo	17Mt	1.8g/t Au	0.9Moz Au + Ag,	Telson Resources	Evaluation
Morado ⁵			Cu, Pb, Zn		

^{1.} Leagold, NI 43-101 Technical Report, Los Filos, March 2017

 $^{^5}$ Telson Resources website - $\,$ http://www.telsonmining.com/projects/camp-morado-mine/campo-morado-resource-summary

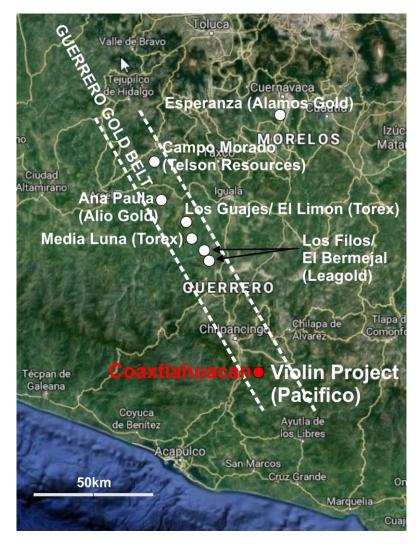


Figure 1: Major deposits of the Guerrero Gold Belt, published resources see Table 1

^{2.} Torex Gold Resources Inc website - https://www.torexgold.com/projects

^{3.} Alio Gold website - https://www.aliogold.com/assets

^{4.} Alamos Gold website - http://www.alamosgold.com/mines-and-projects/reserves-and-resources

Violin Project Geology and Mineralisation

Within the Violin Project area sediments, including limestones, are intruded by a major quartz monzonite stock and quartz-felspar-biotite porphyry dykes, sills and plugs (Figure 2).

Exploration to date includes detailed soil geochemistry. Soil samples were collected from lines spaced 100 to 200 meters at 25 meters apart over most of the licence area (3,882 soil samples), the work was carried out by Exploraciones La Plata de C.V. in 2007 (samples with values over 100ppb Au and/or 300ppm Cu are listed in Appendix 1, samples not listed contained lower values that were considered immaterial). The results are considered reliable by Pacifico due to check sample lines carried out by Silver Standard Inc. in 2013, and by limited verification sampling carried out under the supervision of Pacifico in 2017. However, the Exploration Results have not been reported in accordance with the JORC Code 2012.

In addition to geological mapping, rock chip sampling (259 samples in total) has been completed (samples with values over 500ppb Au and/or 5000ppm Cu are listed in Appendix 2, samples not listed contained lower values that were considered immaterial). An IP survey and a ground magnetic survey have also been completed over the Coaxtlahuacan Prospect.

The Coaxtlahuacan Prospect is the most advanced Prospect within the Violin Project and is of immediate high interest to Pacifico for the establishment of drill targets. Observations made by Pacifico geologists during a due diligence site visit indicate that the copper mineralisation at Coaxtlahuacan occurs as chalcocite and malachite and is associated with stockworks, massive lenses and disseminations of magnetite, or sericite altered quartz felspar porphyry. The distribution and extent of associated strong gold and copper geochemistry are in accordance with the skarn model of intrusive related mineralisation at and near the contact with limestones, as found elsewhere at the major mines and deposits of the Guerrero Belt. Five check channel samples (Figure 4) were taken by Pacifico with an average 0.44g/t Au and 0.70% Cu (Appendix 3), and which confirm previous channel sampling in this area.

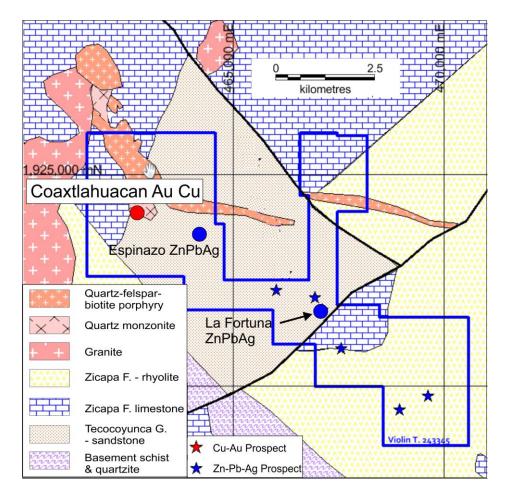


Figure 2: Violin Project tenement area, geology and prospects

The visible surface indications of extensive stockwork copper gold mineralisation occur over an area of 500 x 100m in the topographically lower part (particularly gullies) of the geochemically anomalous area.

Pre-erosion near-surface weathering and leaching of the copper has resulted in the copper only being detected in gullies. The soils, over this zone, show an anomalous area of 500m x 300m that contains soil sample values of >100ppb Au, and which is open to the south (Figure 4).

peripheral to ground magnetic highs. The significant gold in soils geochemistry, of more than 50ppb Au, occurs over an area of 1.6km x 1.3km (Figure 4). Within part of this zone occurs a major gold anomaly (>100ppb Au, with values up to 2161ppb Au) covering an area of about 1500m x 200m. The strength and extent of this gold in soil anomaly is impressive and indicates potential for a substantial tonnage of disseminated and stockwork gold (and probably copper, having been leached out near-surface) mineralisation. This anomalous zone is open to the north livest and to the south.

Pacifico plans to rapidly confirm drill targets and commence drilling as soon as practical, in order to advance towards establishing resources.

Figure 3: Verification channel sampling at Coaxtlahuacan, over copper-gold mineralised zone. Observed malachite and chalcocite

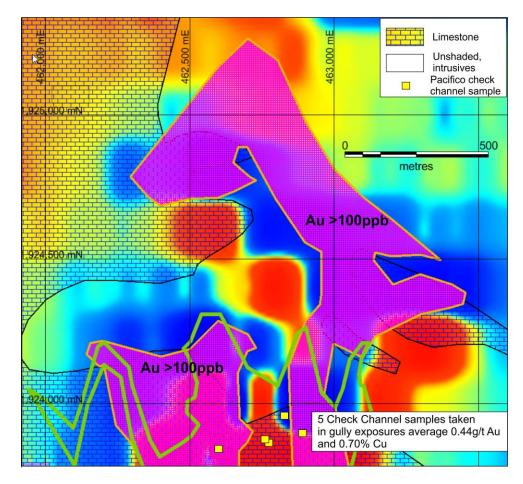


Figure 4: Ground magnetics (coloured image) overlain by gold (orange outline, purple fill >100ppb Au in soils) and copper (green outline >300ppm in soils) geochemistry.

Additional Prospects

The Pacifico due diligence site visit focussed on the Coaxtlahuacan prospect, however also of great interest are the Fortuna and Espinazo zinc, lead, and silver prospects located within the tenement (Figure 2), regarded as showing sedex style mineralisation. At the Fortuna prospect, the average value of 10 dump and grab rock chip samples previously taken is 5.2% Zn, 4.5% Pb and 220g/t Ag (Figure 5 and Appendix 4). These prospects remain an unevaluated upside.

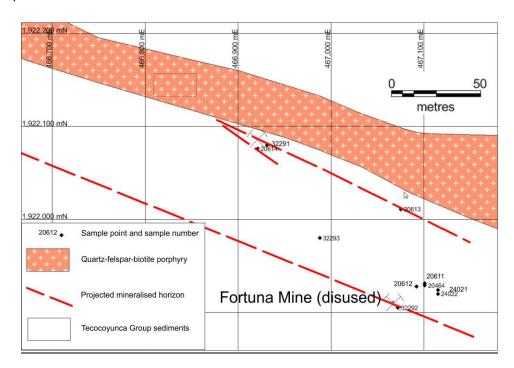


Figure 5: La Fortuna Prospect – Geology and location of rock chip samples

Summary of Key Option and Acquisition Terms

An Agreement has been concluded between the Vendors to grant an option to acquire all the issued capital in Minera GS.

Option Terms

In consideration of a payment of US\$50,000 (to be funded through current cash reserves) and 10,000,000 fully paid ordinary shares in the issued capital of Pacifico (to be issued shortly under Listing Rule 7.1), the vendor grants Pacifico the sole and exclusive option ("Option") for a period of nine months ("Option Period") to purchase all the issued capital in Minera GS free from any debts, liens, charges, encumbrances or other adverse interests. Pacifico must also meet the minimum expenditure requirements for the project being the sum of 871,353 Mexican Pesos (approximately US\$47,000) for Calendar year 2018. During the Option Period, Pacifico will have full access to the project and may complete all forms of exploration, including drilling.

Acquisition Terms

Should Pacifico elect to exercise the Option, Pacifico will pay to the Vendor a total of US\$250,000 and 20,000,000 fully paid ordinary shares in the issued capital of Pacifico. On or before the exercise of the Option, should the gold price on the London Metals Exchange reach US\$1,500/ounce, Pacifico will issue the Vendors an additional 10,000,000 fully paid ordinary shares in the issued capital of the Company at the time of exercise of the option.

Payments on definition of Resources

The Vendor shall receive A\$1,000,000 in cash upon the delineation of a JORC 500,000 oz Au equivalent Indicated Resource. In addition, the Vendor shall receive A\$3,000,000 in cash upon the completion of a bankable feasibility study confirming >1,000,000 oz Au equivalent Indicated Resource.

Conditions Precedent

Completion of the acquisition is conditional upon the satisfaction or waiver of a number of conditions precedent, including but not limited to:

- (a) the parties executing a formal sale and purchase agreement on customary terms (including the provision by the Vendor of warranties as to title, capacity, permitting, no material non-disclosures, other standard warranties for a transaction of this nature and indemnities in respect of such warranties);
- (b) Pacifico being satisfied as at completion that there has been no material adverse change in relation to the assets and the assets are in good standing;
- (c) each party obtaining all Governmental, statutory and regulatory approvals, consents and/or permits required to enable it to perform its obligations under this Agreement;
- (d) Pacifico obtaining shareholder approval to proceed with the Acquisition (this condition is for the benefit of Pacifico and may only be waived by Pacifico).

Representations and Warranties

The Vendors and Pacifico have each provided representations and warranties that are considered standard for agreements of this nature.

For further information or to be added to our electronic mailing list please contact:

Simon Noon (Managing Director)

Phone: +61 (0)8 6266 8642

Email: info@pacificominerals.com.au

About Pacifico Minerals Ltd

Pacifico Minerals Ltd ("Pacifico") (ASX: PMY) is a Western Australian based exploration company with interests Australia and Colombia. In Australia the company is focussed on advancing the Borroloola West project in the Northern Territory. The Borroloola West Project covers an outstanding package of ground north-west of the McArthur River Mine (the world's largest producing zinc – lead mine) with high potential for the discovery of world class base metal deposits. In Colombia the company is focussed on advancing its Berrio Gold Project. Berrio is situated in the southern part of the prolific Segovia Gold Belt and is characterised by a number of operational, artisanal-scale adits. The project is 35km from the Magdalena River which is navigable to the Caribbean Sea and has excellent infrastructure in place including hydro power, sealed roads, a water supply and telecommunications coverage.

Competent Person Statement

The information in this announcement that relates to the Violin Copper-Gold project is based on information compiled by Mr David Pascoe, who is a Member of the Australian Institute of Geoscientists. Mr Pascoe is contracted exclusively to Pacifico Minerals Limited. Mr Pascoe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pascoe consents to the inclusion in this announcement of the matters based on information in the form and context in which it appears.

Forward Looking Statements

Certain statements in this document are or maybe "forward-looking statements" and represent Pacifico's intentions, projections, expectations or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements necessarily involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Pacifico, and which may cause Pacifico's actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Pacifico does not make any representation or warranty as to the accuracy of such statements or assumptions.

APPENDIX 1: Soil sample results > 100ppbAu and/or 300ppm Cu

_	APPENDIX 1: Soil sample results > 100ppbAu and/or 300ppm Cu									
S	ample #	WGS84E	WGS84N	Au ppb	Cu ppm	Sample #	WGS84E	WGS84N	Au ppb	Cu ppm
	83603	463101	1923950	62	340	83702	462400	1923775	60	633
	83604	463100	1923975	75	765	83703	462400	1923800	80	1363
	83606	463101	1924025	50	413	83705	462400	1923850	150	220
2	83607	463100	1924050	61	430	83707	462400	1923900	125	118
1	83612	463099	1924175	115	512	83708	462400	1923926	130	83
1	83613	463099	1924199	215	1102	83709	462401	1923950	180	108
1	83614	463100	1924225	425	136	83712	462400	1924025	175	151
\	83615	463101	1924249	230	168	83714	462400	1924075	225	55
	83616	463100	1924275	120	133	83716	462398	1924125	295	246
	83617	463101	1924299	340	123	83717	462400	1924150	125	187
\	83618	463100	1924325	160	224	83739	462405	1924699	105	26
	83619	463100	1924350	215	110	83741	462400	1924751	215	67
\	83620	463100	1924375	120	110	83742	462400	1924775	160	69
	83621	463100	1924399	235	60	83743	462401	1924800	185	68
	83622	463100	1924425	160	58	83749	462299	1923875	170	262
	83623	463100	1924451	395	68	83750	462301	1923900	135	1150
	83624	463101	1924475	1020	44	83751	462301	1923925	125	108
1	83625	463099	1924499	190	24	83752	462300	1923949	145	339
	83627	463101	1924549	130	53	83753	462300	1923975	195	331
	83631	463100	1924650	395	22	83754	462300	1924000	215	258
1	83632	463100	1924674	390	11	83755	462299	1924025	280	316
1	83633	463101	1924700	215	35	83756	462300	1924050	345	475
	83659	462500	1923775	125	1128	83757	462300	1924075	225	82
	83660	462501	1923800	90	615	83758	462299	1924100	170	176
\	83661	462500	1923826	80	871	83759	462301	1924124	245	337
	83662	462499	1923848	80	1185	83760	462300	1924150	265	283
,	83663	462500	1923874	9	722	83761	462300	1924175	220	272
	83666	462500	1923950	295	259	83803	462200	1924150	160	772
	83667	462500	1923975	890	634	83804	462199	1924175	140	279
	83668	462500	1924001	1280	390	83805	462199	1924200	125	331
	83670	462500	1924050	125	115	83808	462200	1924275	215	108
	83671	462500	1924076	150	164	84485	464900	1923300	175	35
	83672	462500	1924100	135	152	84487	464900	1923250	105	23
1	83675	462500	1924175	415	2234	85842	466400	1922525	170	45
	83676	462500	1924200	80	388	85846	466400	1922425	145	35.2
	83680	462500	1924300	70	305	86401	466200	1922449	150	18
	83683	462501	1924376	45	357	86402	466199	1922425	185	18
1	83684	462500	1924401	38	351	86405	466201	1922350	105	84
	83685	462500	1924426	595	120	86707	464700	1923500	110	21
	83688	462499	1924500	120	304	86760	464200	1924000	120	10
	83690	462499	1924550	145	103	86775	464200	1923625	1120	87
	83697	462500	1924726	360	259	86776	464200	1923599	105	17
	83698	462499	1924750	1410	3810	86777	464200	1923575	295	20
	83699	462499	1924776	140	276	86778	464201	1923550	150	2

	Sample #	WGS84E	WGS84N	Au ppb	Cu ppm	Sample #	WGS84E	WGS84N	Au ppb	Cu ppm
	86786	464200	1923350	120	9	86963	462700	1925100	125	26
	86896	462900	1924950	180	125	86964	462700	1925075	205	32
	86897	462900	1924925	145	199	86965	462700	1925050	340	35
	86898	462900	1924900	125	100	86966	462700	1925025	260	39
	86899	462900	1924875	150	71	86967	462700	1925000	360	55
	86900	462900	1924850	340	29	86968	462700	1924975	625	88
	86901	462900	1924825	240	112	86969	462700	1924950	230	83
	86902	462900	1924799	195	81	86971	462700	1924900	310	99
	86903	462900	1924775	275	77	86976	462700	1924775	910	45
	86904	462900	1924750	780	124	86981	462700	1924650	120	84
(15)	86905	462900	1924725	205	132	86987	462700	1924500	195	865
	86906	462900	1924700	310	58	86988	462700	1924475	180	650
20	86907	462900	1924675	340	60	86995	462700	1924300	195	641
	86908	462900	1924650	1080	74	86998	462700	1924225	120	870
	86909	462900	1924625	215	45	86999	462700	1924200	110	274
	86911	462900	1924575	105	77	87392	463200	1924275	110	275
	86916	462900	1924450	44	660	87393	463200	1924301	215	448
	86918	462899	1924400	59	632	87394	463201	1924326	190	328
	86923	462900	1924275	115	165	87395	463200	1924350	275	160
60	86924	462900	1924250	85	360	87396	463200	1924375	195	122
	86925	462900	1924225	245	1240	87397	463200	1924400	180	113
	86926	462900	1924200	90	846	87402	463200	1924525	115	35
	86927	462900	1924175	260	1169	87403	463200	1924550	175	32
	86928	462900	1924150	120	1253	87494	462800	1924875	185	72
20	86929	462900	1924125	265	1157	87495	462801	1924850	305	89.1
	86930	462900	1924100	205	465	87496	462800	1924825	280	228
	86931	462900	1924075	180	274	87499	462800	1924750	230	86.9
a 5	86932	462900	1924050	120	603	87500	462800	1924724	170	117
	86933	462900	1924025	115	549	87585	464000	1923500	360	13.2
	86934	462900	1924000	160	979	87723	463000	1923775	205	620
	86935	462900	1923975	150	368	87724	463000	1923800	190	360
	86936	462900	1923950	155	352	87725	463000	1923825	240	1401
J	86937	462900	1923925	165	2294	87726	463000	1923850	195	3210
	86938	462900	1923900	475	2340	87727	463000	1923875	145	1365
	86939	462900	1923875	320	3050	87728	463001	1923900	90	1320
	86940	462900	1923850	420	2050	87729	463000	1923925	185	1757
	86941	462900	1923825	215	2104	87730	463000	1923950	190	896
	86942	462900	1923800	130	2090	87731	463000	1923975	240	989
	86943	462900	1923775	105	520	87735	463000	1924075	110	195
	86957	462700	1925250	520	31	87741	463000	1924225	105	205
	86959	462700	1925200	140	47	87743	463000	1924275	175	270
	86960	462700	1925175	240	52	87744	463000	1924300	270	195
	86961	462700	1925150	135	47	87745	463000	1924325	240	101
	86962	462700	1925125	245	31	87746	463000	1924350	110	89

	Sample #	WGS84E	WGS84N	Au ppb	Cu ppm	Sample #	WGS84E	WGS84N	Au ppb	Cu ppm
	87747	463000	1924375	160	48	87836	462600	1924775	225	77
	87748	463000	1924400	265	170	87837	462600	1924800	2160	169
	87749	463000	1924425	175	180	87838	462600	1924825	270	89
	87750	463000	1924450	185	50.6	87839	462600	1924850	520	35
	87751	463001	1924475	235	88	87840	462600	1924875	245	79
	87752	463000	1924500	158	40	87841	462600	1924900	270	94
	87753	463001	1924525	215	33	87843	462600	1924950	175	95
	87754	463000	1924550	129	36	87844	462600	1924975	580	22
	87755	463000	1924575	199	39	87845	462600	1925001	105	72
	87756	463000	1924600	210	35	87848	462600	1925075	205	49
	87757	463000	1924625	435	89	87849	462600	1925100	235	39
(15)	87758	463001	1924650	1320	68	87850	462600	1925125	560	27
	87759	463001	1924675	640	58	87851	462600	1925150	180	32
00	87760	463001	1924700	730	53	88186	463400	1924400	180	343
	87761	463000	1924725	395	71	88187	463400	1924376	520	1084.6
	87762	463000	1924750	445	79	88188	463399	1924349	260	227
	87763	463000	1924775	435	86	88234	463300	1924326	185	88
	87764	463000	1924800	375	85	88235	463298	1924349	185	62
	87796	462600	1923775	210	1280	88236	463299	1924375	450	45
	87797	462600	1923800	135	749	88238	463299	1924424	205	53
60	87798	462600	1923825	185	1995	88242	463300	1924526	210	72
	87799	462600	1923850	170	2851	88253	462001	1924576	45	587
	87800	462600	1923875	105	529	88276	462001	1924000	11	390
	87801	462600	1923900	90	674	88277	462000	1923975	7	310
	87802	462600	1923925	245	788	88317	462100	1924049	1	301
20	87803	462600	1923950	185	1287	88321	462099	1923950	80	307
	87804	462600	1923975	285	668	88323	462100	1923899	85	408
	87805	462599	1924000	115	1422	88325	462100	1923850	54	456
a 5	87806	462600	1924025	160	1025	88326	462100	1923825	32	363
	87807	462600	1924050	740	1808	88327	462100	1923800	32	349
	87808	462600	1924075	165	803	88402	462001	1925750	360	6
	87809	462600	1924100	135	671	88514	462799	1924375	105	103
	87810	462600	1924125	150	401	88520	462801	1924225	80	412
7	87811	462600	1924150	180	724	88527	462801	1924050	90	506
	87812	462600	1924175	125	315	88528	462801	1924025	80	555
	87813	462600	1924200	58	845	88529	462801	1924000	17	607
	87814	462600	1924225	175	445	88530	462801	1923975	49	514
	87815	462600	1924250	205	408	88531	462801	1923950	56	469
	87816	462600	1924275	110	275	88532	462800	1923925	6	746
	87817	462600	1924300	90	305	88533	462800	1923900	70	815
	87824	462600	1924475	160	126	88534	462800	1923875	80	604
	87825	462600	1924500	175	110	88535	462800	1923851	75 220	653
	87834	462600	1924725	125	107	88536	462800	1923825	320	526
	87835	462600	1924750	105	58	88537	462800	1923800	2	748

APPENDIX 2: Rock chip sample results > 500ppbAu and/or 5000ppm Cu

	APPENDIX 2: Rock chip sample results > 500ppbAu and/or 5000ppm Cu									
Sample #	WGS 84E	WGS 84N	Au ppb	Cu ppm	Sample #	WGS 84E	WGS 84N	Au ppb	Cu ppm	
20464	467101	1921929	610	6900	CX2549	462384	1923960	735	172	
20465	464094	1923549	3800	100	CX2552	462959	1923904	451	9890	
20607	466134	1922636	560	300	CX2554	462977	1923900	3230	4360	
20610	466013	1922294	1850	200	CX2567	463400	1924365	4990	1340	
21958	462881	1923891	1815	10350	CX2592	462431	1924137	1395	971	
21966	462589	1924035	542	7080	CX2605	462982	1923853	563	2940	
21967	462594	1924039	839	7660	CX2606	462642	1923861	156	5410	
21968	462592	1924040	680	7720	CX2608	462765	1923861	350	5060	
21969	462770	1923878	310	7510	CX2611	462750	1923864	287	5270	
21970	462767	1923870	493	5150	CX2612	462750	1923862	129	6050	
21971	462630	1923879	214	8500	CX2613	462750	1923860	115	7080	
21972	462619	1923861	514	8470	CX2614	462760	1923875	435	7510	
21977	462366	1924020	628	388	CX2615	462760	1923872	976	8630	
21978	462359	1924062	3170	937	CX2617	462762	1923867	656	4640	
21979	462431	1924134	12700	530	CX2618	462762	1923864	606	6930	
21983	462608	1924605	1285	4100	CX2621	462641	1923861	100	7060	
21985	462752	1923894	615	587	CX2622	462641	1923864	282	6000	
24027	464220	1923660	2780	100	CX2624	462630	1923847	184	6200	
24028	464226	1923681	3590	100	CX2625	462628	1923850	196	5520	
24034	466221	1922726	4290	200	CX2626	462627	1923852	323	5920	
24043	464410	1925468	1780	100	CX2627	462629	1923854	377	6970	
32191	462895	1924658	540	46	CX2628	462626	1923852	339	5240	
32229	466218	1922738	6250	318	CX2631	462619	1923858	337	6130	
32244	462829	1923934	5860	12430	CX2632	462622	1923861	300	5700	
32247	462895	1923993	130	6777	CX2634	462626	1923865	328	6110	
32248	462863	1923895	450	7966	CX2635	462630	1923869	717	5380	
32250	462758	1923864	1280	6634	CX2637	462642	1923869	705	6200	
32251	462760	1923858	745	3628	CX2638	462640	1923871	473	12350	
32252	462764	1923853	425	7020	CX2639	462641	1923874	193	6310	
32254	462618	1923996	140	8054	CX2641	462641	1923877	298	8710	
32294	466397	1922082	9650	82	CX2644	462633	1923875	301	9650	
32297	462923	1923521	150	5708	CX2645	462899	1924643	573	66	
CX2515	462518	1924911	550	151	CX2653	462470	1924020	537	858	
CX2518	462514	1924924	1275	42	CX2656	462450	1924000	885	766	
CX2530	462339	1924005	809	376	CX2659	462835	1923944	87	7280	
CX2532	462322	1924001	522	432	CX2662	462834	1923937	848	7890	
					CX2664	462835	1923933	883	13000	
					CX2665	462836	1923931	282	5220	
					CX2671	462817	1923934	547	6360	
					CX2672	462819	1923932	605	7090	
					CX2673	462820	1923930	622	7700	
					CX2684	462879	1923894	1910	12700	
					CX2685	462882	1923892	2200	11950	

APPENDIX 3: Verification Rock chip sample results of samples taken by Pacifico

Sample			Au	Ag	As	Bi	Cu	Pb	Sb	Zn
#	WGS84E	WGS84N	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
119028	462835	1923934	1.011	5	634	132	8440	110	206	1250
119029	462881	1923888	0.277	<2	268	14	6240	153	122	1980
119030	462599	1923831	0.039	4	111	13	4260	204	53	270
119031	462770	1923858	0.335	8	90	<10	11800	<4	12	1190
119032	462764	1923860	0.524	<2	131	20	4120	19	33	407

APPENDIX 4: Rock chip sample results - La Fortuna

			Sample	Width				
Number	WGS84N	WGS84E	type	(m)	Ag ppm	Cu ppm	Pb %	Zn %
20464	467101	1921929	Dump		4	6900	0.02	0.06
20611	467101	1921931	Dump		40	100	1.97	4.88
20612	467092	1921928	Dump		564	500	20.90	13.55
20613	467075	1922011	Dump		236	900	1.76	5.42
20614	466921	1922076	Dump		118	600	4.70	18.76
24021	467115	1921924	Dump		1	100	0.08	1.40
24022	467115	1921920	Dump		102	200	3.76	5.39
32291	466931	1922080	Channel	1	48	433	1.68	1.93
32292	467072	1921905	Dump		1084	1253	9.82	0.33
32293	466988	1921980	Channel	1.5	5	222	0.34	0.06

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

	Criteria	JORC Code explanation	Commentary
	Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Soil samples (Exploraciones La Plata) – Soil samples collected at line spacing of 100m to 200m and intervals along lines of 25m. Most overburden on the tenement area is residual soil, although in steeper areas some colluvium is present. • The soil samples were taken to Manzanillo and shipped to Pioneer Laboratories, B.C. Canada. – 80mesh fraction, aqua regia digest, analysed for Ag, Cu, Pb, Zn by ICP/ES. Au by AAS • Several types of rock samples – grab, float, dump, chip and channel samples were taken by Exploraciones La Plata and Minera GS. For all types of samples, about 2 kilograms of rock chips were collected in a double-bagged plastic sample bag with a numbered tag and shipped to Pioneer Laboratories, B.C. Canada. – 80mesh fraction, aqua regia digest, analysed for Ag, Cu, Pb, Zn by ICP/ES. Au by AAS. • Channel samples (taken by Pacifico) delivered direct to SGS, Mazatlan. Crushed and pulverised to -75 mesh. Multelement analyses by ICP-OES, Au by AAS, Ag by FAS.
]	Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 No drilling carried out or reported
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample 	 No drilling carried out or reported

Criteria	JORC Code explanation	Commentary
	recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No drilling has been reported Results of channel samples qualitative. Limited in extent by outcrop or sub-outcrop and therefore may not be representative
Sub-sampling	If core, whether cut or sawn and whether quarter,	No drilling reported
techniques and sample preparation	 half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Sample sizes taken are correct for the sample type and style of copper/gold mineralisation sampled.
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, 	
	 including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Soil samples (Exploraciones La Plata) were analysed by ICP/ES with aqua regia digest (base metals), and AAS (gold) considered to measure total concentrations of all significant copper, other base metals and gold.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of 	 Exploraciones La Plata did not use internal quality control samples.
	accuracy (ie lack of bias) and precision have been established.	 In 2013 Silver Standard completed two orthogonal lines of soil geochemical samples centred at Coaxtlahuacan. They confirmed the general tenor of the results obtained by Exploraciones La Plata.
		 Rock samples (Exploraciones La Plata) were dried at 60 degrees Celsius. The dried samples are crushed, then split with a riffle splitter. 250 grams of the split sample was pulverized for analysis. One gram of the sample pulp was digested with 50 ml of

Criteria	JORC Code explanation	Commentary
		aqua regia, then diluted to 100 ml with water. Elements in solution are determined by ICP/ES. Gold values for rock samples were measured using AAS.
		 No external standards inserted during Pacifico verification sampling. Verified qualitatively with previous sample results, observed copper mineralisation and handheld XRF results (not
		reported). • Although historical results as presented are consistent between samples and with Pacifico verification sampling and are therefore considered to be reliable. However more detailed and systematic check sampling will be completed before committing to a drill program
3		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No drilling carried out or reported .
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Soil and channel samples located by handheld GPS and accurate to 4 or 5m. WGS 84 grid coordinates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Exploration only, no Mineral Resources
Orientation of data in relation to geological structure		 Surface sampling extent and direction is limited by outcrop and sub-crop and may or may not be representative.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	All samples stored securely on site before sealed delivery to lab
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	None required at this preliminary exploration stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Granted concession Violin, title number 243345, 2707.2 ha. 100% owned by Minera GS S.A.de C.V. Surface access through Ejidos Tlacotepec, Mochitlan, Coaxtlahuacan, Rincon de Tlapacholapa, Tlapacholapa, Mexcaltepec, Astatepec and Jalapa No known impediments to exploration
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration by Exploraciones La Plata, 2005 to 2008. Evaluation work by Silver Standard Resources Inc in 2013
Geology	Deposit type, geological setting and style of mineralisation.	The Violin Project is considered prospective for intrusive related skarn copper-gold mineralisation, and sediment hosted zinc-lead-silver mineralisation
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling has been carried out or reported
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for reporting of metal equivalent values should be clearly stated. 	No drilling carried out or reported

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling carried out or reported
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Map provided (figure 3)
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results as reported may not be representative
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Results of ground magnetics survey and IP survey
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Verification of all sampling data Geological mapping Geochemical sampling for extensions. Diamond drilling